LAIP7

From Example Problems
Jump to: navigation, search

Show that \langle \alpha x,\alpha y\rangle =|\alpha |^{2}\langle x,y\rangle

By property of Complex numbers, z\overline {z}=|z|^{2}. So this is true because \langle \alpha x,\alpha y\rangle =\alpha \overline {\alpha }\langle x,y\rangle


Main Page : Linear Algebra : Inner Products