LAIP4

From Example Problems
Jump to: navigation, search

Show that \langle x,y\rangle +\langle y,x\rangle =2{\mbox{ Re }}\langle x,y\rangle

By property of Complex numbers, z+\overline {z}=2{\mbox{ Re }}z. So this is true because \langle x,y\rangle +\langle y,x\rangle =\langle x,y\rangle +\overline {\langle x,y\rangle }


Main Page : Linear Algebra : Inner Products