Karl Menger

From Example Problems
Jump to navigation Jump to search
This article is about the mathematician, not about his father, the economist Carl Menger.

Karl Menger (born in Vienna, Austria, January 13 1902 -- died in Highland Park, Illinois, USA, October 5 1985) was a mathematician of great scope and depth.

He was the son of the famous economist Carl Menger.

He did work on algebras, curve and dimension theory, and geometries. He was a student of Hans Hahn and received his PhD from the University of Vienna in 1924.

His most famous popular contribution was the Menger sponge (mistakenly known as Sierpinski's sponge), a three-dimensional version of Sierpinski's carpet. It is also related to the Cantor set and the Sierpinski square.

With Arthur Cayley, Menger is considered one of the founders of distance geometry; especially by having formalized definitions to the notions of angle and of curvature in terms of directly measurable physical quantities, namely ratios of distance values.

The characteristic mathematical expressions appearing in those definitions are Cayley-Menger determinants.

He also is credited with Menger's theorem.

External links

de:Karl Menger pl:Karl Menger sk:Karl Menger