Geo5.4.8

From Example Problems
Jump to: navigation, search

Find the equation of the line joining the points \left(3,{\frac  {3\pi }{4}}\right),\left(2,{\frac  {\pi }{4}}\right)\,

Equation is

r\left[3\sin \left(\theta -{\frac  {3\pi }{4}}\right)-2\sin \left(\theta -{\frac  {\pi }{4}}\right)\right]+6\sin \left({\frac  {3\pi }{4}}-{\frac  {\pi }{4}}\right)=0\,

r\left[-3\sin \left(\pi -\left(\theta +{\frac  {\pi }{4}}\right)\right)-2\sin \left(\theta -{\frac  {\pi }{4}}\right)\right]+6=0\,

r\left[-3\sin \left(\theta +{\frac  {\pi }{4}}\right)-2\sin \left(\theta -{\frac  {\pi }{4}}\right)\right]+6=0\,

r\left[-3\left({\frac  {\sin \theta }{{\sqrt  {2}}}}+{\frac  {\cos \theta }{{\sqrt  {2}}}}\right)-2\left({\frac  {\sin \theta }{{\sqrt  {2}}}}-{\frac  {\cos \theta }{{\sqrt  {2}}}}\right)\right]+6=0\,

{\frac  {r}{{\sqrt  {2}}}}\left[-5\sin \theta -\cos \theta \right]+6{\sqrt  {2}}=0\,

{\frac  {r}{{\sqrt  {2}}}}[\cos \theta +5\sin \theta ]-6{\sqrt  {2}}=0\,


Main Page:Geometry:Polar Coordinates