From Example Problems
Jump to: navigation, search

Minimize J(y)=\int _{0}^{1}(1+y''^{2})dx,y(0)=0,y'(0)=1,y(1)=1,y'(1)=1\,

Use the Euler-Lagrange equation for this integrand functional L\,

L_{y}-{\frac  {d}{dx}}L_{{y^{\prime }}}+{\frac  {d^{2}}{dx^{2}}}L_{{y^{{\prime \prime }}}}=0


0-{\frac  {d}{dx}}(0)+{\frac  {d^{2}}{dx^{2}}}(2y^{{\prime \prime }}) =0\,
2y^{{\prime \prime \prime \prime }}\, =0\,
y^{{\prime \prime \prime \prime }}\, =0\,
y^{{\prime \prime \prime }}\, =c_{1}\,
y^{{\prime \prime }}\, =c_{1}x+c_{2}\,
y^{{\prime }}\, ={\frac  {1}{2}}c_{1}x^{2}+c_{2}x+c_{3}\,
y\, ={\frac  {1}{6}}c_{1}x^{3}+{\frac  {1}{2}}c_{2}x^{2}+c_{3}x+c_{4}\,

Solving for the constants

y(0)=0\, \Longrightarrow c_{4}=0
y^{\prime }(0)=1\, \Longrightarrow c_{3}=1
y(1)=1\, \Longrightarrow {\frac  {c_{1}}{6}}+{\frac  {c_{2}}{2}}+1+0=1
y^{\prime }(1)=1\, \Longrightarrow {\frac  {c_{1}}{2}}+c_{2}+1=1

Thus, solving the system of equations

{\begin{cases}{\frac  {c_{1}}{6}}+{\frac  {c_{2}}{2}}=0\\{\frac  {c_{1}}{2}}+c_{2}=0\end{cases}}
\Longrightarrow c_{2}=0,c_{1}=0

Therefore, y=x\, is an extremal.

Main Page : Calculus of Variations