# BoseEinstein statistics

*For other topics related to***Einstein**see Einstein (disambiguation).

In statistical mechanics, **Bose-Einstein statistics** determines the
statistical distribution of identical indistinguishable
bosons over the energy states in thermal equilibrium.

Bose-Einstein (or **B-E**) statistics are closely related to
Maxwell-Boltzmann statistics (M-B) and Fermi-Dirac statistics (F-D).
While F-D statistics holds for fermions, M-B statistics holds for
*classical* particles, i.e. identical but distinguishable particles, and
represents the classical or high-temperature limit of both F-D and B-E
statistics. (M-B, B-E, and F-D statistics are all derived from the
Boltzmann factor probability weight applied to the problem of classical
particles and discrete energy quanta with boson/fermion behavior, respectively.)

Bosons, unlike fermions, are not subject to the Pauli exclusion principle: an unlimited number of particles may occupy the same state at the same time. This explains why, at low temperatures, bosons can behave very differently than fermions; all the particles will tend to congregate together at the same lowest-energy state, forming what is known as a Bose-Einstein condensate.

B-E statistics was introduced for photons in 1920 by Bose and generalized to atoms by Einstein in 1924. Einstein's original sketches were recovered in August 2005 in the Academical Library of Leiden, the Netherlands, where they were found by a student (Rowdy Boeyink).

The expected number of
particles in an energy state *i* for B-E statistics is:

where:

*n*is the number of particles in state_{i}*i**g*is the degeneracy of state_{i}*i**ε*is the energy of the_{i}*i*-th state- μ is the chemical potential
*k*is Boltzmann's constant*T*is absolute temperature- exp is the exponential function

This reduces to M-B statistics for energies *( ε _{i}-μ ) >> kT*.

### Derivation of the Bose-Einstein distribution

Suppose we have a number of energy levels, labelled by index *i*, each level
having energy *ε _{i}* and containing a total of

*n*particles. Suppose each level contains

_{i}*g*distinct sublevels, all of which have the same energy, and which are distinguishable. For example, two particles may have different momenta, in which case they are distinguishable from each other, yet they can still have the same energy. The value of

_{i}*g*associated with level

_{i}*i*is called the "degeneracy" of that energy level. Any number of bosons can occupy the same sublevel.

Let *w(n,g)* be the number of ways of distributing *n* particles among
the *g* sublevels of an energy level. There is only one way of distributing
*n* particles with one sublevel, therefore *w*(*n*,1) = 1. Its easy to see that
there are *n* + 1 ways of distributing *n* particles in two sublevels which we will write as:

With a little thought it can be seen that the number of ways of distributing
*n* particles in three sublevels is *w*(*n*,3) = *w*(*n*,2) + *w*(*n*−1,2) + ... + *w*(0,2) so that

where we have used the following theorem involving binomial coefficients:

Continuing this process, we can see that *w(n,g)* is just a binomial coefficient

The number of ways that a set of occupation numbers *n _{i}* can be
realized is the product of the ways that each individual energy level can be populated:

where the approximation assumes that . Following the same procedure used in deriving the Boltzmann distribution, we wish to find the set of *n _{i}* for which

*W*is maximised, subject to the constraint that there be a fixed number of particles, and a fixed energy. We constrain our solution using Lagrange multipliers forming the function:

Using the approximation and using Stirling's approximation for the factorials and taking the derivative with respect to *n _{i}*, and setting the result to zero and solving for

*n*yields the Fermi-Dirac population numbers:

_{i}It can be shown thermodynamically that β = 1/*kT* where *k* is Boltzmann's constant and *T* is the temperature, and that α = -μ/*kT* where μ is the chemical potential, so that finally:

Note that the above formula is sometimes written:

where is the absolute activity.

## See also

- Maxwell Boltzmann statistics (derivation)
- Fermi-Dirac statistics
- Parastatistics
- Planck's law of black body radiation

cs:Boseho-Einsteinovo rozdělení de:Bose-Einstein-Statistik fr:Statistique de Bose-Einstein nl:Bose-Einsteinstatistiek pl:Statystyka Bosego-Einsteina sl:Bose-Einsteinova statistika zh:玻色-爱因斯坦统计