Boron

From Example Problems
Jump to navigation Jump to search
This article is about . For , see Boron (disambiguation).

Template:Elementbox header Template:Elementbox series Template:Elementbox groupperiodblock Template:Elementbox appearance img Template:Elementbox atomicmass gpm Template:Elementbox econfig Template:Elementbox epershell Template:Elementbox section physicalprop Template:Elementbox phase Template:Elementbox density gpcm3nrt Template:Elementbox densityliq gpcm3mp Template:Elementbox meltingpoint Template:Elementbox boilingpoint Template:Elementbox heatfusion kjpmol Template:Elementbox heatvaporiz kjpmol Template:Elementbox heatcapacity jpmolkat25 Template:Elementbox vaporpressure katpa Template:Elementbox section atomicprop Template:Elementbox crystalstruct Template:Elementbox oxistates Template:Elementbox electroneg pauling Template:Elementbox ionizationenergies4 Template:Elementbox atomicradius pm Template:Elementbox atomicradiuscalc pm Template:Elementbox covalentradius pm Template:Elementbox section miscellaneous Template:Elementbox magnetic Template:Elementbox eresist ohmmat20 Template:Elementbox thermalcond wpmkat300k Template:Elementbox thermalexpansion umpmkat25 Template:Elementbox speedofsound rodmpsat20 Template:Elementbox bulkmodulus gpa Template:Elementbox mohshardness Template:Elementbox vickershardness mpa Template:Elementbox cas number Template:Elementbox isotopes begin Template:Elementbox isotopes stable Template:Elementbox isotopes stable |- | colspan="6" align="center" | *Boron-10 content may be as low as 19.1% and as
high as 20.3% in natural samples. Boron-11 is
the remainder in such cases.
Template:Elementbox isotopes end Template:Elementbox footer

Boron is the chemical element in the periodic table that has the symbol B and atomic number 5. A trivalent metalloid element, boron occurs abundantly in the ore borax. There are two allotropes of boron; amorphous boron is a brown powder, but metallic boron is black. The metallic form is hard (9.3 on Mohs' scale) and a bad conductor in room temperatures. It is never found free in nature.

Notable characteristics

Boron is electron-deficient, possessing a vacant p-orbital. It is an electrophile. Compounds of boron often behave as Lewis acids, readily bonding with electron-rich substances in an attempt to quench boron's insatiable hunger for electrons.

Optical characteristics of this element include the transmittance of infrared light. At standard temperatures boron is a poor electrical conductor but is a good conductor at high temperatures.

Boron nitride can be used to make materials that are almost as hard as diamond. The nitride also acts as an electrical insulator but conducts heat similar to a metal. This element also has lubricating qualities that are similar to graphite. Boron is also similar to carbon with its capability to form stable covalently bonded molecular networks.

Applications

The most economically important compounds of boron are:

Of the several hundred uses of boron compounds, one can cite the following ones:

Boron compounds are being investigated for use in a broad range of applications, including as components in sugar-permeable membranes, carbohydrate sensors and bioconjugates. Medicinal applications being investigated include boron neutron capture therapy and drug delivery. Other boron compounds show promise in treating arthritis.

Hydrides of boron are oxidized easily and liberate a considerable amount of energy. They have therefore been studied for use as possible rocket fuels.

History

Compounds of boron (Arabic Buraq from Persian Burah) have been known of for thousands of years. In early Egypt, mummification depended upon an ore known as natron, which contained borates as well as some other common salts. Borax glazes were used in China from 300 AD, and boron compounds were used in glassmaking in ancient Rome.

The element was not isolated until 1808 by Sir Humphry Davy, Joseph Louis Gay-Lussac, and Louis Jacques Thénard, to about 50 percent purity. These men did not recognize the substance as an element. It was Jöns Jakob Berzelius in 1824 who identified boron as an element. The first pure boron was produced by the American chemist W. Weintraub in 1909.

Occurrence

The United States and Turkey are the world's largest producers of boron. Boron does not appear in nature in elemental form but is found combined in borax, boric acid, colemanite, kernite, ulexite and borates. Boric acid is sometimes found in volcanic spring waters. Ulexite is a borate mineral that naturally has properties of fiber optics.

Economically important sources are from the ore rasorite (kernite) and tincal (borax ore) which are both found in the Mojave Desert of California (with borax being the most important source there). Turkey is another place where extensive borax deposits are found.

Pure elemental boron is not easy to prepare. The earliest methods used involve reduction of boric oxide with metals such as magnesium or aluminium. However the product is almost always contaminated with metal borides. (The reaction is quite spectacular though.) Pure boron can be prepared reducing volatile boron halogenides with hydrogen at high temperatures.

In 1997 crystalline boron (99% pure) cost about US$5 per gram and amorphous boron cost about US$2 per gram.

Isotopes

Boron has two naturally-occurring and stable isotopes, 11B (80.1%) and 10B (19.9%). The mass difference results in a wide range of δB-11 values in natural waters, ranging from -16 to +59. There are 13 known isotopes of boron, the shortest-lived isotope is 7B which decays through proton emission and alpha decay. It has a half-life of 3.26500x10-22 s. Isotopic fractionation of boron is controlled by the exchange reactions of the boron species B(OH)3 and B(OH)4. Boron isotopes are also fractionated during mineral crystallization, during H2O phase changes in hydrothermal systems, and during hydrothermal alteration of rock. The latter effect species preferential removal of the 10B(OH)4 ion onto clays results in solutions enriched in 11B(OH)3 may be responsible for the large 11B enrichment in seawater relative to both oceanic crust and continental crust; this difference may act as an isotopic signature.

Depleted boron

The Boron-10 isotope is good at capturing thermal neutrons from cosmic radiation or in PWRs (Pressurized Water Reactor, a type of nuclear power reactor). It then undergoes fission - producing a gamma ray, an alpha particle, and a lithium ion. When this happens inside of an integrated circuit, the fission products may then dump charge into nearby chip structures, causing data loss (bit flipping, or single event upset). In critical semiconductor designs, depleted boron - consisting almost entirely of Boron-11 - is used, to avoid this effect, as one of radiation hardening measures. Boron-11 is a by-product of the nuclear industry.

Precautions

Elemental boron and borates are not toxic and therefore do not require special precautions while handling. Some of the more exotic boron hydrogen compounds, however, are toxic and do require special handling care.

See also

References

External links

af:Boor (element) ar:بورون bg:Бор (химичен елемент) ca:Bor cs:Bor cy:Boron da:Bor (grundstof) de:Bor et:Boor es:Boro eo:Boro eu:Boro fr:Bore ko:붕소 io:Borono id:Boron is:Bór it:Boro he:בורון lv:Bors (ķīmiskais elements) lt:Boras hu:Bór mi:Pūtiwha nl:Boor (element) ja:ホウ素 no:Bor (grunnstoff) nn:Grunnstoffet bor oc:Bòr pl:Bor pt:Boro ru:Бор (элемент) sk:Bór sl:Bor (element) sr:Бор (хемијски елемент) fi:Boori sv:Bor th:โบรอน vi:Bo tr:Bor (element) uk:Бор zh:硼