Algebra-Radicals

From Example Problems
Jump to: navigation, search

solution {\sqrt  {98}}\,

solution {\sqrt  {16}}\,

solution {\sqrt  {18}}\,

solution {\sqrt  {-12}}\,

solution {\sqrt  {243}}\,

solution (-243)^{{\frac  {1}{3}}}\,

solution {\sqrt  {24}}\cdot {\sqrt  {8}}\,

solution Simplify {\frac  {20}{(1250)^{{\frac  {1}{4}}}}}\,

solution Find the value of {\sqrt  {16+2{\sqrt  {55}}}}\,

solution Find the value of {\sqrt  {3+{\sqrt  {5}}}}\,

solution Simplify {\sqrt  {6-{\sqrt  {7}}+{\sqrt  {27+4{\sqrt  {35}}}}}}\,

solution Find the value of x if {\sqrt  {23+x{\sqrt  {10}}}}={\sqrt  {18}}+{\sqrt  {5}}\,

solution Rationalise {\frac  {1}{2{\sqrt  {3}}-3{\sqrt  {2}}}}\,

solution Find x if {\sqrt  {15-x{\sqrt  {14}}}}={\sqrt  {8}}-{\sqrt  {7}}\,

solution Find x+{\frac  {1}{x}},x^{2}+{\frac  {1}{x^{2}}}\,ifx={\frac  {{\sqrt  {5}}-2}{{\sqrt  {5}}+2}}\,

solution Show that{\sqrt  {2+{\sqrt  {5}}-{\sqrt  {6-3{\sqrt  {5}}+{\sqrt  {14-6{\sqrt  {5}}}}}}}}=2\,

solution Show that{\frac  {1}{{\sqrt  {12-{\sqrt  {140}}}}}}-{\frac  {1}{{\sqrt  {8-{\sqrt  {60}}}}}}-{\frac  {2}{{\sqrt  {10+{\sqrt  {84}}}}}}=0\,

solution Find the value of 4x^{3}+2x^{2}-8x+7ifx={\frac  {{\sqrt  {3}}+1}{2}}\,

solution Find the value of {\frac  {1}{2+{\sqrt  {3}}}}+{\frac  {1}{2-{\sqrt  {3}}}}\,

solution which one is greater in {\sqrt  {3}}+2,3+{\sqrt  {2}}\,

solution Express {\sqrt  {567}}\, in a simple form

solution Simplify (250)^{{{\frac  {1}{3}}}}\, to the lowest possible

solution Express 3x{\sqrt  {2y}}\, as a single root

solution Simplify {\frac  {3}{{\sqrt  {12}}}}\,

solution Rationalise the denominator of {\frac  {1}{4-{\sqrt  {5}}}}\,

solution Find (56-24{\sqrt  {5}})^{{{\frac  {1}{4}}}}\,

solution Find the geometric mean of 8+2{\sqrt  {15}},11-2{\sqrt  {30}}\,

solution Show that (a+b+c)^{{3}}=27abc\, if (a^{{{\frac  {1}{3}}}}+b^{{{\frac  {1}{3}}}}+c^{{{\frac  {1}{3}}}})=0\,

solution Calculate{\sqrt  {{\sqrt  {137-36{\sqrt  {14}}}}}}\,

solution Find the cube root of 37-30{\sqrt  {3}}\,

solution Find the cube root of 9{\sqrt  {3}}+11{\sqrt  {2}}\,

solution Find the difference quotient for f(x)={\sqrt  {x}}\,


Main Page - Algebra