Algebra-Exponents

From Example Problems
Jump to: navigation, search

Integer

solution Evaluate (x-2y)(x^{2}+2xy+4y^{2})\,

solution Evaluate (2x+3y)(4x^{2}-6xy+9y^{2})\,

solution Evaluate (3x-4)+(x+2)+(3x^{2}+x-8)+(x^{3}+8)\,

solution Evaluate (3x^{2}+x-8)(x^{3}+8)\,

solution Evaluate (x-2y)^{3}\,

solution Evaluate (3x+2y)^{3}\,

solution (2a^{{-3}}b^{2})^{{-2}}\,

solution \left({\frac  {a^{3}}{b^{5}}}\right)^{{-2}}\,

solution {\frac  {4x^{{-3}}y^{{-5}}}{6x^{{-4}}y^{3}}}\,

solution \left({\frac  {m^{{-3}}m^{3}}{n^{{-2}}}}\right)^{{-2}}\,

solution \left((-9)^{{3/4}}\right)^{2}\,

solution \left(-9^{{3/4}}\right)^{2}\,

solution \left((0.5^{{-2}})\right)^{2}\,

solution \left({\frac  {l^{4}m^{3}}{n^{2}}}\right)^{{-4}}\,

Rational

solution (-32)^{{\frac  {1}{5}}}\,

solution {\frac  {\left(x^{2}y^{{-3}}z^{{-1}}\right)^{{-2}}}{\left(x^{{-1}}y^{2}z^{3}\right)^{{1/2}}}}\,

solution (64)^{{\frac  {1}{4}}}\ (81)^{{\frac  {1}{2}}}\,

solution {\frac  {(60^{3})(128^{2})}{(27^{2})(48)}}\,

solution (3^{2})(3^{9})(3^{{12}})\,

solution (a^{{\frac  {1}{2}}}+b^{{\frac  {1}{2}}})(a^{{\frac  {1}{2}}}-b^{{\frac  {1}{2}}})\,

solution (a^{{\frac  {1}{3}}}+b^{{\frac  {1}{3}}})(a^{{\frac  {2}{3}}}-(a^{{\frac  {1}{3}}})(b^{{\frac  {1}{3}}})+b^{{\frac  {2}{3}}})\,

solution (a^{{\frac  {1}{3}}}+b^{{\frac  {1}{3}}}+c^{{\frac  {1}{3}}})(a^{{\frac  {2}{3}}}-(a^{{\frac  {1}{3}}})(b^{{\frac  {1}{3}}}-(b^{{\frac  {1}{3}}})(c^{{\frac  {1}{3}}})-(c^{{\frac  {1}{3}}})(a^{{\frac  {1}{3}}})+b^{{\frac  {2}{3}}}+c^{{\frac  {2}{3}}})\,

solution Find the sum of {\frac  {x^{2}+1}{x-2}}\, and {\frac  {x^{2}-1}{x-2}}\,

solution Find the sum of the rational expressions {\frac  {x+1}{(x-1)^{2}}}\, and {\frac  {1}{x+1}}\,

solution Find the sum of {\frac  {x^{2}+x-1}{x^{2}-1}}\, and {\frac  {x+1}{x^{3}+2}}\,

ALGEBRA BOOKS


solution Express {\frac  {x+4}{x+2}}-{\frac  {x-1}{x-2}}\, as a rational expression.

solution Simplify {\frac  {3}{x-1}}-{\frac  {2}{x}}+{\frac  {x+3}{(x+1)(x-1)}}\,

solution What rational expression should be subtracted from {\frac  {2x^{2}+2x-7}{x^{2}+x-6}}\, to get {\frac  {x-1}{x-2}}\,

solution Express the following as a rational expression {\frac  {[{\frac  {x^{2}-1}{x^{2}-25}}]}{[{\frac  {x^{2}-4x-5}{x^{2}+4x-5}}]}}\, in its lowest terms.


Main Page - Algebra